Please use this identifier to cite or link to this item:
https://scholarhub.balamand.edu.lb/handle/uob/7451
Title: | Effects of recycled waste on the modulus of elasticity of structural concrete | Authors: | Gerges, Najib N. Issa, Camille A Khalil, Nariman Aintrazi, Sarah |
Keywords: | Modulus of elasticity Recycled waste Structural concrete |
Issue Date: | 2024-07-13 | Part of: | Scientific Reports | Volume: | 14 | Issue: | 1 | Abstract: | Concrete, the construction industry's most utilized construction material, has transformed the environment and the modern built-up lifestyle. Although concrete is a first-rate supplier to the carbon footprint, it is imperative for buildings to display sustainable characteristics. Scholars have explored techniques to lessen the carbon footprint and the way to put into effect strategic waste control plans in which waste is reused. This study explores the dual benefits wherein concrete ingredients are replaced through abandoned waste which reduces the unwanted waste materials that have a substantial carbon footprint and thus results in the recycling of waste as part of a sustainable economic system. In this study, timber ash is utilized as a partial substitute for sand and cement, crumb rubber and waste glass as a partial substitute for sand, recycled concrete, and waste glass as a substitute for gravel. Characteristics studies were done to check the influence of each waste replacement on the modulus of elasticity of concrete. More than sixty-five combinations of waste have been examined to attain the modulus of elasticity of concrete. A total of about 200 concrete cylinders were cast to provide at least three cylinders for each generated data point. Three different ASTM standards were utilized to determine the modulus of elasticity of each mix. Four mixes comprising of the combination of two waste materials and two mixes comprising of the combination of three waste materials replacing natural materials were determined to exhibit an equal or superior modulus of elasticity of the control mix of 25 GPa. |
URI: | https://scholarhub.balamand.edu.lb/handle/uob/7451 | DOI: | 10.1038/s41598-024-65516-0 | Open URL: | Link to full text | Type: | Journal Article |
Appears in Collections: | Department of Civil and Environmental Engineering |
Show full item record
SCOPUSTM
Citations
1
checked on Nov 30, 2024
Record view(s)
31
checked on Dec 3, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.