Please use this identifier to cite or link to this item:
Title: Application of the Johnson-Cook plasticity model in the finite element simulations of the nanoindentation of the cortical bone
Authors: Remache, D
Semaan, M
Rossi, J M
Pithioux, M
Milan, J L
Affiliations: Faculty of Engineering 
Keywords: Design of experiments (DOE)
Inverse optimization approach
Johnson-cook model
Mechanical cortical bone behavior
Nanoindentation test
Issue Date: 2020
Publisher: Elsevier
Part of: Journal of the Mechanical Behavior of Biomedical Materials
Volume: 101
The mechanical behavior of the cortical bone in nanoindentation is a complicated mechanical problem. The finite element analysis has commonly been assumed to be the most appropriate approach to this issue. One significant problem in nanoindentation modeling of the elastic-plastic materials is pile-up deformation, which is not observed in cortical bone nanoindentation testing. This phenomenon depends on the work-hardening of materials; it doesn't occur for work-hardening materials, which suggests that the cortical bone could be considered as a work-hardening material. Furthermore, in a recent study [59], a plastic hardening until failure was observed on the micro-scale of a dry ovine osteonal bone samples subjected to micropillar compression. The purpose of the current study was to apply an isotropic hardening model in the finite element simulations of the nanoindentation of the cortical bone to predict its mechanical behavior. The Johnson-Cook (JC) model was chosen as the constitutive model. The finite element modeling in combination with numerical optimization was used to identify the unknown material constants and then the finite element solutions were compared to the experimental results. A good agreement of the numerical curves with the target loading curves was found and no pile-up was predicted. A Design Of Experiments (DOE) approach was performed to evaluate the linear effects of the material constants on the mechanical response of the material. The strain hardening modulus and the strain hardening exponent were the most influential parameters. While a positive effect was noticed with the Young's modulus, the initial yield stress and the strain hardening modulus, an opposite effect was found with the Poisson's ratio and the strain hardening exponent. Finally, the JC model showed a good capability to describe the elastoplastic behavior of the cortical bone.
ISSN: 17516161
DOI: 10.1016/j.jmbbm.2019.103426
Ezproxy URL: Link to full text
Type: Journal Article
Appears in Collections:Department of Electrical Engineering

Show full item record


checked on Feb 4, 2023

Record view(s)

checked on Feb 5, 2023

Google ScholarTM


Dimensions Altmetric

Dimensions Altmetric

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.