Please use this identifier to cite or link to this item: https://scholarhub.balamand.edu.lb/handle/uob/2570
Title: Statistical description of turbulent particle-laden flows in the very dilute regime using the anisotropic Gaussian moment method
Authors: Sabat, Macole 
Aymeric, Vié
Larat, Adam
Massot, Marc
Affiliations: Department of Mechanical Engineering 
Keywords: Disperse phase
Eulerian models
Anisotropic gaussian
Particle trajectory crossing
Subjects: Turbulence
Issue Date: 2019
Part of: International journal of multiphase Flow
Volume: 112
Start page: 243
End page: 257
Abstract: 
The present work aims at investigating the ability of a Kinetic-Based Moment Method (KBMM) to reproduce the statistics of turbulent particle-laden flows using the Anisotropic Gaussian (AG) closure. This method is the simplest KBMM member that can account for Particle Trajectory Crossing (PTC) properly with a well-posed mathematical structure Vié et al. (2015). In order to validate this model further, we investigate here 3D turbulent flows that are more representative of the mixing processes, which occurs in realistic applications. The chosen configuration is a 3D statistically-stationary Homogeneous Isotropic Turbulence (HIT) loaded with particles in a very dilute regime. The analysis focuses on the description of the first three lowest order moments of the particulate flow: the number density, the Eulerian velocity and the internal energy. A thorough numerical study on a large range of particle inertia allows us to show that the AG closure extends the ability of the Eulerian models to correctly reproduce the particle dynamics up to a Stokes number based on the Eulerian turbulence macro-scale equal to one, but also highlights the necessity of high-order numerical schemes to reach mesh convergence, especially for the number density field.
URI: https://scholarhub.balamand.edu.lb/handle/uob/2570
DOI: 10.1016/j.ijmultiphaseflow.2018.10.004
Ezproxy URL: Link to full text
Type: Journal Article
Appears in Collections:Department of Mechanical Engineering

Show full item record

SCOPUSTM   
Citations

4
checked on Oct 23, 2021

Google ScholarTM

Check

Dimensions Altmetric

Dimensions Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.