Please use this identifier to cite or link to this item:
https://scholarhub.balamand.edu.lb/handle/uob/540
Title: | Evidence theory for image segmentation using information from stochastic Watershed and Hessian filtering | Authors: | Chahine, Chaza Berbari, Racha El Lagorre, Corinne Nakib, Amir Petit, Eric |
Affiliations: | Department of Telecommunications and Networking Engineering | Keywords: | Probability density function Biomedical imaging Standards |
Subjects: | Image segmentation Databases Water resources Image analysis |
Issue Date: | 2015 | Part of: | International Conference on Systems, Signals and Image Processing (IWSSIP 2015) | Start page: | 141 | End page: | 144 | Conference: | International Conference on Systems, Signals and Image Processing (IWSSIP 2015) (22nd : 10-12 Sept. 2015 : London, UK) | Abstract: | In this paper; a new segmentation method is presented. It combines the probability density function of the stochastic Watershed and the Frobenius norm of the Hessian operator under the evidence theory framework. The first step of this method is a classification of the values provided by these two sources of information into five classes. Then, a predefined belief scheme is used to assign masses to pixels in each class. The segmentation result is obtained after beliefs fusion using the Dempster's rule of combination. The method is designed for two-label segmentation, contour and non-contour. Experimental results on a set of images from the Berkeley dataset, shows the ability of this method to yield a good segmentation compared to the given ground truths. |
URI: | https://scholarhub.balamand.edu.lb/handle/uob/540 | Ezproxy URL: | Link to full text | Type: | Conference Paper |
Appears in Collections: | Department of Telecommunications and Networking Engineering |
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.