Please use this identifier to cite or link to this item:
https://scholarhub.balamand.edu.lb/handle/uob/5349
Title: | PET waste as organic linker source for the sustainable preparation of MOF-derived methane dry reforming catalysts | Authors: | Karam, Leila Miglio, Arianna Specchia, Stefania Hassan, Nissrine El Massiani, Pascale Reboul, Julien |
Affiliations: | Department of Chemical Engineering | Issue Date: | 2021 | Part of: | Materials Advances | Volume: | 2 | Issue: | 8 | Start page: | 2750 | End page: | 2758 | Abstract: | A catalyst made of Ni0 nanoparticles highly dispersed on a lamellar alumina support was prepared by an environmentally-friendly route. The latter involved the synthesis of an aluminum-containing metal-organic framework (MOF) MIL-53(Al) in which the linkers were derived from the depolymerization of polyethylene terephthalate (PET) originating from plastic wastes. After demonstrating the purity and structure integrity of the PET-derived MIL-53(Al), this MOF was impregnated with nickel nitrate salt and then calcined to form a lamellar Ni-Al2O3 mixed metal oxide with a high surface area (SBET = 1276 m2 g-1, N2 sorption). This mixed oxide consisted of nickel aluminate nanodomains dispersed within amorphous alumina, as revealed by PXRD and TPR analyses. Subsequent reduction under H2 resulted in the formation of well-dispersed 5 nm Ni0 nanoparticles homogeneously occluded within the interlamellar porosity of the γ-alumina matrix, as attested by electron microscopy. This waste-derived catalyst displayed catalytic performances in the reaction of dry reforming of methane (DRM) as good as its counterpart made from a MOF obtained from commercial benzene-1,4-dicarboxylic acid (BDC). Thus, under similar steady state conditions, at 650 °C and 1 bar, the PET-derived catalyst led to CH4 and CO2 conversions as high as those on the BDC-derived catalyst, and its catalytic stability and selectivity towards DRM were excellent as well (no loss of activity after 13 h and H2 : CO products ratio remaining at 1). Moreover, both catalysts were much better than those of a reference nickel alumina catalyst prepared by conventional impregnation route. This work therefore demonstrates the possibility of using plastic wastes instead of commercial chemicals to prepare efficient porous nickel-alumina DRM catalysts from MOFs, fostering the concept of circular economy. |
URI: | https://scholarhub.balamand.edu.lb/handle/uob/5349 | DOI: | 10.1039/d0ma00984a | Open URL: | Link to full text | Type: | Journal Article |
Appears in Collections: | Department of Chemical Engineering |
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.