Please use this identifier to cite or link to this item:
https://scholarhub.balamand.edu.lb/handle/uob/413
Title: | Behavior of a bayesian adaptation method for incremental enrollment in speaker verification | Authors: | Fredouille , Corinne Mariethoz, J Jaboulet , C Mokbel, Chafic |
Affiliations: | Department of Electrical Engineering | Keywords: | Bayesian methods Hidden Markov models Context modeling Speech recognition Speaker recognition Telematics Robustness Protocols Covariance matrix Viterbi algorithm |
Issue Date: | 2000 | Part of: | 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. | Start page: | 1 | End page: | 4 | Conference: | International Conference on Acoustics, Speech, and Signal Processing (5-9 June 2000 : Istanbul, Turkey,) | Abstract: | Classical adaptation approaches are generally used for speaker or environment adaptation of speech recognition systems. In this paper, we use such techniques for the incremental training of client models in a speaker verification system. The initial model is trained on a very limited amount of data and then progressively updated with access data, using a segmental-EM procedure. In supervised mode (i.e. when access utterances are certified), the incremental approach yields equivalent performance to the batch one. We also investigate on the impact of various scenarios of impostor attacks during the incremental enrollment phase. All results are obtained with the Picassoft platform-the state-of-the-art speaker verification system developed in the PICASSO project. |
URI: | https://scholarhub.balamand.edu.lb/handle/uob/413 | Ezproxy URL: | Link to full text | Type: | Conference Paper |
Appears in Collections: | Department of Electrical Engineering |
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.