Please use this identifier to cite or link to this item:
https://scholarhub.balamand.edu.lb/handle/uob/2612
Title: | SVM-Based Detection of SAR Images in Partially Developed Speckle Noise | Authors: | Daba, Jihad S. Abdullatif, O.M |
Affiliations: | Department of Electrical Engineering | Keywords: | Least Square-Support Vector Machine Partially Developed Speckle Multi-Look Model |
Subjects: | Synthetic aperture radar | Issue Date: | 2007 | Part of: | Journal of the world academy of science engineering and technology | Volume: | 1 | Issue: | 12 | Start page: | 546 | End page: | 550 | Abstract: | Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of SAR (synthetic aperture radar) images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to real SAR images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected SAR images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (the detection hypotheses) in the original images. |
URI: | https://scholarhub.balamand.edu.lb/handle/uob/2612 | Open URL: | Link to full text | Type: | Journal Article |
Appears in Collections: | Department of Electrical Engineering |
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.