Please use this identifier to cite or link to this item: https://scholarhub.balamand.edu.lb/handle/uob/2219
Title: Mapping postfire vegetation recovery using EO-1 hyperion imagery
Authors: Mitri, George 
Gitas, Ioannis Z.
Affiliations: Institute of Environment 
Keywords: Vegetation recovery
Hyperspectral remote sensing
Object-based classification
Issue Date: 2010
Part of: IEEE transactions on geoscience and remote sensing
Volume: 48
Issue: 3
Start page: 1613
End page: 1618
Abstract: 
The aim of this paper is to investigate whether it is possible to accurately map postfire vegetation recovery on the Mediterranean island of Thasos by employing Earth Observing-1 (EO-1) Hyperion imagery and object-based classification. Specific objectives include the following: 1) locating and mapping areas of forest regeneration and other vegetation recovery and distinguishing among them; 2) distinguishing between Pinus brutia regeneration and Pinus nigra regeneration within the area of forest regeneration; and 3) examining whether it is possible to distinguish between areas of forest regeneration (Pinus brutia, Pinus nigra) and mature forest. The data used in this study consist of satellite images, field-spectroradiometry measurements, and field observations of the homogenous revegetated areas. The methodology comprised four consecutive steps. The first step involved preprocessing of the Hyperion image and field data. Subsequently, an object-oriented model was developed, which involved three steps, namely, image segmentation, object training, and object classification. The process resulted in the separation of five classes (¿brutia mature,¿ ¿ nigra mature,¿ ¿brutia regeneration,¿ ¿nigra regeneration,¿ and ¿other vegetation¿). The accuracy assessment revealed very promising results (approximately 75.81% overall accuracy, with a Kappa Index of Agreement of 0.689). Some classification confusion involving the classes of Pinus brutia regeneration and Pinus nigra regeneration was recorded. This could be attributed to the absence of large homogenous areas of regenerated pine trees. The main conclusion drawn in this paper was that object-based classification can be used to accurately map postfire vegetation recovery using EO-1 Hyperion imagery.
URI: https://scholarhub.balamand.edu.lb/handle/uob/2219
Ezproxy URL: Link to full text
Type: Journal Article
Appears in Collections:Institute of Environment

Show full item record

Record view(s)

3
checked on Dec 2, 2021

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.