Please use this identifier to cite or link to this item:
https://scholarhub.balamand.edu.lb/handle/uob/2193
Title: | Left ventricular model to study the combined viscoelastic, heart rate, and size effects | Authors: | Karam, Elie Abche, Antoine |
Affiliations: | Department of Electrical Engineering Department of Electrical Engineering |
Keywords: | Myocardial sarcomere Cardiac pump Excitation contraction coupling Viscoelasicity |
Issue Date: | 2006 | Part of: | International journal of bioengineering and life sciences | Volume: | 1 | Issue: | 3 | Start page: | 159 | End page: | 168 | Abstract: | It is known that the heart interacts with and adapts to its venous and arterial loading conditions. Various experimental studies and modeling approaches have been developed to investigate the underlying mechanisms. This paper presents a model of the left ventricle derived based on nonlinear stress-length myocardial characteristics integrated over truncated ellipsoidal geometry, and second-order dynamic mechanism for the excitation-contraction coupling system. The results of the model presented here describe the effects of the viscoelastic damping element of the electromechanical coupling system on the hemodynamic response. Different heart rates are considered to study the pacing effects on the performance of the left-ventricle against constant preload and afterload conditions under various damping conditions. The results indicate that the pacing process of the left ventricle has to take into account, among other things, the viscoelastic damping conditions of the myofilament excitation-contraction process. The effects of left ventricular dimensions on the hemdynamic response have been examined. These effects are found to be different at different viscoelastic and pacing conditions. |
URI: | https://scholarhub.balamand.edu.lb/handle/uob/2193 | Open URL: | Link to full text | Type: | Journal Article |
Appears in Collections: | Department of Electrical Engineering |
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.