Please use this identifier to cite or link to this item:
https://scholarhub.balamand.edu.lb/handle/uob/97
Title: | Features for HMM-based arabic handwritten word recognition systems | Authors: | Likforman-Sulem, Laurence Hajj Mohamad, Ramy Al Mokbel, Chafic Menasri, Fares Bernard, Anne-Laure Bianne Kermorvant, Christopher |
Affiliations: | Department of Electrical Engineering | Issue Date: | 2012 | Part of: | V. Märgner & H. El Abed (Eds.), Guide to OCR for Arabic Scripts. Springer. | Start page: | 123 | End page: | 143 | Abstract: | HMM-based systems need observation sequences as input. These observations consist of discrete values or vectors extracted from word images or text lines. In this chapter we explore various types of features which are popular for Arabic cursive handwriting recognition. Some of these features are statistical, based on pixel distributions or local directions. Others are structural, based on the presence of loops, ascenders, or descenders. We show how these features can be efficient within HMM-based systems based on sliding windows or grapheme segmentation. |
URI: | https://scholarhub.balamand.edu.lb/handle/uob/97 | Type: | Book Chapter |
Appears in Collections: | Department of Electrical Engineering |
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.