Please use this identifier to cite or link to this item: https://scholarhub.balamand.edu.lb/handle/uob/722
DC FieldValueLanguage
dc.contributor.authorGhaoui, A.en_US
dc.contributor.authorYvon, Françoisen_US
dc.contributor.authorMokbel, Chaficen_US
dc.contributor.authorChollet, Gérarden_US
dc.date.accessioned2020-12-23T08:35:38Z-
dc.date.available2020-12-23T08:35:38Z-
dc.date.issued2005-
dc.identifier.urihttps://scholarhub.balamand.edu.lb/handle/uob/722-
dc.description.abstractState of the art Speech Recognition systems use statistical language modeling and in particular N-gram models to represent the language structure. The Arabic language has a rich morphology, which motivates the introduction of morphological constraints in the language model. Class-based N-gram models have shown satisfactory results, especially for language model adaptation and training from reduced datasets. They were also proven quite effective in their use of memory space. In this paper, we investigate a new morphological class-based language model. Morphological rules are used to derive the different words in a class from their stem. As morphological analyzer, a rule-based stemming method is proposed for the Arabic language. The language model has been evaluated on a database composed of articles from Lebanese newspaper Al-Nahar for the years 1998 and 1999. In addition, a linear interpolation between the N-gram model and the morphological model is also evaluated. Preliminary experiments detailed in this paper show satisfactory results.en_US
dc.language.isoengen_US
dc.titleOn the use of morphological constraints in N-gram statistical language modelen_US
dc.typeConference Paperen_US
dc.relation.conferenceEuropean Conference on Speech Communication and Technology (9th : 4-8 Sep 2005 : Lisbon, Portugal)en_US
dc.contributor.affiliationDepartment of Electrical Engineeringen_US
dc.date.catalogued2019-05-24-
dc.description.statusPublisheden_US
dc.identifier.OlibID192043-
dc.relation.ispartoftextINTERSPEECH 2005en_US
dc.provenance.recordsourceOliben_US
Appears in Collections:Department of Electrical Engineering
Show simple item record

Record view(s)

53
checked on Nov 21, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.