Please use this identifier to cite or link to this item: https://scholarhub.balamand.edu.lb/handle/uob/7084
DC FieldValueLanguage
dc.contributor.authorMirzaei, Mehrdaden_US
dc.contributor.authorAkhoondi, Asiehen_US
dc.contributor.authorHamd, Waelen_US
dc.contributor.authorNoé Díaz de León, Jorgeen_US
dc.contributor.authorSelvaraj, Rengarajen_US
dc.date.accessioned2023-10-30T10:08:10Z-
dc.date.available2023-10-30T10:08:10Z-
dc.identifier.urihttps://scholarhub.balamand.edu.lb/handle/uob/7084-
dc.description.abstractPhotocatalysis is known as a new and cost-effective method to solve the problems of energy shortage and environmental pollution. Although the application of this method seems practical, finding an efficient and stable photocatalyst with a suitable bandgap and visible-light sensitivity remains challenging. In this context, vanadate compounds photocatalysts have been synthesized and used as emerging composites, and their efficiency has been improved through elemental doping and morphology modifications. In this review, the major synthesis methods, and the design of the latest photocatalytic compounds based on vanadate are presented. In addition, the effect of vanadate microstructures on various photocatalytic applications such as hydrogen production, CO2 reduction, and removal of organic pollutants and heavy metals are discussed. For instance, the application of a 2D-1D BiVO4/CdS heterostructure photocatalystenhances 40 times the hydrogen production from benzyl alcohol than pure BiVO4. Similarly, the InVO4/Bi2WO6 composite has a superior photocatalytic capability for the reduction of CO2into CO compared to pure InVO4. A CO production rate of 18μmol.g−1.h−1 can be achieved by using this heterostructure. Regarding the organic pollutants’ removal, the use of Montmorillonite/BiVO4 structure allows a complete removal of Brilliant Red 80 dye after only 2 hours of irradiation. Finally, copper heavy metal is reduced to 90 % in water, by using BiVO4/rGO/g-C3N4 optimized photocatalyst structure. Other examples on decorated vanadate compounds for enhancing photocatalytic activities are also treated.en_US
dc.language.isoengen_US
dc.subjectPhotocatalysten_US
dc.subjectSynthesisen_US
dc.subjectSolar energyen_US
dc.subjectVanadate compounden_US
dc.subjectNanocompositeen_US
dc.titleNew updates on vanadate compounds synthesis and visible-light-driven photocatalytic applicationsen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.53063/synsint.2023.31132-
dc.contributor.affiliationDepartment of Chemical Engineeringen_US
dc.description.volume3en_US
dc.description.issue1en_US
dc.date.catalogued2023-10-30-
dc.description.statusPublisheden_US
dc.identifier.openURLhttps://www.synsint.com/index.php/synsint/article/view/132/135en_US
dc.relation.ispartoftextSynthesis and Sinteringen_US
crisitem.author.parentorgFaculty of Engineering-
Appears in Collections:Department of Chemical Engineering
Show simple item record

Record view(s)

62
checked on Dec 18, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.