Please use this identifier to cite or link to this item:
https://scholarhub.balamand.edu.lb/handle/uob/6508
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Assaf, Ata | en_US |
dc.contributor.author | Mokni, Khaled | en_US |
dc.contributor.author | Yousaf, Imran | en_US |
dc.contributor.author | Bhandari, Avishek | en_US |
dc.date.accessioned | 2023-01-23T09:26:54Z | - |
dc.date.available | 2023-01-23T09:26:54Z | - |
dc.date.issued | 2023-01 | - |
dc.identifier.issn | 02755319 | - |
dc.identifier.uri | https://scholarhub.balamand.edu.lb/handle/uob/6508 | - |
dc.description.abstract | In this paper, we study the long memory behavior of the hourly cryptocurrency returns during the COVID-19 pandemic period. Initially, we apply different tests against the spurious long memory, with the results indicating the presence of true long memory for most cryptocurrencies. Yet, using the multivariate test, the series are found to be contaminated by level shifts or smooth trends. Then, we adopt the wavelet-based multivariate long memory approach suggested by Achard and Gannaz (2016) to model their long memory connectivity. The findings indicate a change in persistence for all series during the sample period. The fractal connectivity clustering indicates a similarity among Ethereum (ETH) and Litecoin (LTC), Monero (XMR), Bitcoin (BTC), and EOC token (EOS), while Stellar (XLM) is clustered away from the remaining series, indicating the absence of any interdependence with other crypto returns. Overall, shocks arising from COVID-19 crisis have led to changes in long-run correlation structure. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.subject | Cryptocurrency markets | en_US |
dc.subject | Fractal connectivity | en_US |
dc.subject | Multivariate Long memory | en_US |
dc.subject | Multivariate long memory test | en_US |
dc.subject | Wavelet | en_US |
dc.title | Long memory in the high frequency cryptocurrency markets using fractal connectivity analysis: The impact of COVID-19 | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | 10.1016/j.ribaf.2022.101821 | - |
dc.identifier.scopus | 2-s2.0-85145614095 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85145614095 | - |
dc.contributor.affiliation | Department of Business Administration | en_US |
dc.description.volume | 64 | en_US |
dc.date.catalogued | 2023-01-23 | - |
dc.description.status | Published | en_US |
dc.identifier.ezproxyURL | http://ezsecureaccess.balamand.edu.lb/login?url=https://doi.org/10.1016/j.ribaf.2022.101821 | en_US |
dc.relation.ispartoftext | Research in International Business and Finance | en_US |
crisitem.author.parentorg | Faculty of Business and Management | - |
Appears in Collections: | Department of Business Administration |
SCOPUSTM
Citations
10
checked on Nov 16, 2024
Record view(s)
81
checked on Nov 22, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.