Please use this identifier to cite or link to this item: https://scholarhub.balamand.edu.lb/handle/uob/612
DC FieldValueLanguage
dc.contributor.authorSarieddeen, Fh.en_US
dc.contributor.authorBerbari, Racha Elen_US
dc.contributor.authorImad, Salahen_US
dc.contributor.authorAbdel Baki, J.en_US
dc.contributor.authorHamad, Moezen_US
dc.date.accessioned2020-12-23T08:33:28Z-
dc.date.available2020-12-23T08:33:28Z-
dc.date.issued2013-
dc.identifier.urihttps://scholarhub.balamand.edu.lb/handle/uob/612-
dc.description.abstractBrain ArterioVenous Malformation (BAVM) is an abnormal tangle of brain blood vessels where arteries shunt directly into veins with no intervening capillary bed which causes high pressure and hemorrhage risk. The success of treatment by embolization in interventional neuroradiology is highly dependent on the accuracy of the vessels visualization. In this paper the performance of clustering techniques on vessel segmentation from 3D rotational angiography (3DRA) images is investigated and a new technique of segmentation is proposed. This method consists in: preprocessing step of image enhancement, then K-Means (KM), Fuzzy C-Means (FCM) and Expectation Maximization (EM) clustering are used to separate vessel pixels from background and artery pixels from vein pixels when possible. A post processing step of removing false-alarm components is applied before constructing a three-dimensional volume of the vessels. The proposed method was tested on six datasets along with a medical assessment of an expert. Obtained results showed encouraging segmentations. Keywords—Brain arteriovenous malformation (BAVM); 3-D rotational angiography (3DRA); K-Means (KM) clustering; Fuzzy CMeans (FCM) clustering; Expectation Maximization (EM) clustering; volume rendering.en_US
dc.format.extent4 p.en_US
dc.language.isoengen_US
dc.subjectBrain arteriovenous malformation (BAVM)en_US
dc.subject3-D rotational angiography (3DRA)en_US
dc.subjectK-Means (KM) clusteringen_US
dc.subjectFuzzy C-Means (FCM) clusteringen_US
dc.subjectExpectation Maximization (EM) clusteringen_US
dc.subjectVolume renderingen_US
dc.titleImage clustering framework for BAVM segmentation in 3DRA images: performance analysisen_US
dc.typeConference Paperen_US
dc.relation.conferenceInternational Conference on Digital Image Processing (30-31 Jan 2013 : Dubaii, United Arab Emirates)en_US
dc.contributor.affiliationDepartment of Telecommunications and Networking Engineeringen_US
dc.date.catalogued2019-06-27-
dc.description.statusPublisheden_US
dc.identifier.OlibID192518-
dc.identifier.openURLhttps://waset.org/publications/3639/image-clustering-framework-for-bavm-segmentation-in-3dra-images-performance-analysisen_US
dc.provenance.recordsourceOliben_US
crisitem.author.parentorgIssam Fares Faculty of Technology-
Appears in Collections:Department of Telecommunications and Networking Engineering
Show simple item record

Record view(s)

52
checked on Nov 21, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.