Please use this identifier to cite or link to this item: https://scholarhub.balamand.edu.lb/handle/uob/5602
DC FieldValueLanguage
dc.contributor.authorAssaf, Ataen_US
dc.contributor.authorBhandari, Avisheken_US
dc.contributor.authorCharif, Husnien_US
dc.contributor.authorDemir, Enderen_US
dc.date.accessioned2022-05-17T09:46:33Z-
dc.date.available2022-05-17T09:46:33Z-
dc.date.issued2022-07-
dc.identifier.issn10575219-
dc.identifier.urihttps://scholarhub.balamand.edu.lb/handle/uob/5602-
dc.description.abstractIn this paper, we study the long memory behavior of Bitcoin, Litecoin, Ethereum, Ripple, Monero, and Dash with a focus on the COVID-19 period. Initially, we apply a time-varying Lifting method to estimate the Hurst exponent for each cryptocurrency. Then we test for a change in persistence over time. To model the multivariate connectivity, the wavelet-based multivariate long memory approach proposed by Achard and Gannaz (2016) is implemented. Our results indicate a change in the long-range dependence for the majority of cryptocurrencies, with a noticeable downward trend in persistence after the 2017 bubble and then a dramatic drop after the outbreak of COVID-19. The drop in persistence after COVID-19 is further illustrated by the Fractal connectivity matrix obtained from the Wavelet long-memory model. Our findings provide important implications regarding the evolution of market efficiency in the cryptocurrency market and the associated fractal structure and dynamics of the crypto prices over time.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.subjectCryptocurrency marketsen_US
dc.subjectFractal connectivityen_US
dc.subjectHurst exponenten_US
dc.subjectMultivariate Long memoryen_US
dc.subjectWaveleten_US
dc.titleMultivariate long memory structure in the cryptocurrency market: The impact of COVID-19en_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1016/j.irfa.2022.102132-
dc.identifier.scopus2-s2.0-85128278696-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85128278696-
dc.contributor.affiliationFaculty of Business and Managementen_US
dc.description.volume82en_US
dc.date.catalogued2022-05-17-
dc.description.statusPublisheden_US
dc.identifier.ezproxyURLhttp://ezsecureaccess.balamand.edu.lb/login?url=https://www.sciencedirect.com/science/article/pii/S1057521922001004en_US
dc.relation.ispartoftextInternational Review of Financial Analysisen_US
crisitem.author.parentorgFaculty of Business and Management-
Appears in Collections:Department of Business Administration
Show simple item record

SCOPUSTM   
Citations

28
checked on Nov 16, 2024

Record view(s)

79
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.