Please use this identifier to cite or link to this item: https://scholarhub.balamand.edu.lb/handle/uob/445
DC FieldValueLanguage
dc.contributor.authorHajj Mohamad, Ramy Alen_US
dc.contributor.authorMokbel, Chaficen_US
dc.contributor.authorLikforman-Sulem, Laurenceen_US
dc.date.accessioned2020-12-23T08:30:31Z-
dc.date.available2020-12-23T08:30:31Z-
dc.date.issued2007-
dc.identifier.urihttps://scholarhub.balamand.edu.lb/handle/uob/445-
dc.description.abstractIn this paper we present a two-stage system for the off-line recognition of cursive Arabic handwritten words. The proposed method is analytic without segmentation, and is able to cope with handwriting inclination and with shifted positions of diacritical marks. First, the recognition stage relies on 3 classifiers based on hidden Markov modelling (HMM). The second stage depends on the combination of these classifiers. The feature vectors used for recognition are related to pixel density distribution and to local pixel configurations. These vectors are extracted on word binary images by using a sliding window approach with different angles. We have experimented different combination schemes. The neural network-based combined system yields best performance on the IFN- ENIT benchmark data base of handwritten names of Tunisian villages/towns.en_US
dc.format.extent5 p.en_US
dc.language.isoengen_US
dc.subjectHandwriting recognitionen_US
dc.subjectHidden Markov modelsen_US
dc.subjectFeature extractionen_US
dc.subjectNeural networken_US
dc.subjectPattern Recognitionen_US
dc.subjectText recognitionen_US
dc.subjectImage databasesen_US
dc.subjectSpatial databasesen_US
dc.subject.lcshWritingen_US
dc.subject.lcshShapesen_US
dc.titleCombination of HMM-based classifiers for the recognition of arabic handwritten wordsen_US
dc.typeConference Paperen_US
dc.relation.conferenceInternational Conference on Document Analysis and Recognition (ICDAR) (9th : 23-26 Sept. 2007 : Parana, Brazil)en_US
dc.contributor.affiliationDepartment of Electrical Engineeringen_US
dc.description.startpage1en_US
dc.description.endpage5en_US
dc.date.catalogued2019-05-22-
dc.description.statusPublisheden_US
dc.identifier.ezproxyURLhttp://ezsecureaccess.balamand.edu.lb/login?url=https://ieeexplore.ieee.org/document/4377057en_US
dc.identifier.OlibID191989-
dc.relation.ispartoftextNinth International Conference on Document Analysis and Recognition (ICDAR 2007)en_US
dc.provenance.recordsourceOliben_US
Appears in Collections:Department of Electrical Engineering
Show simple item record

Record view(s)

55
checked on Nov 21, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.