Please use this identifier to cite or link to this item: https://scholarhub.balamand.edu.lb/handle/uob/392
DC FieldValueLanguage
dc.contributor.authorHajj Mohamad, Ramy Alen_US
dc.contributor.authorLikforman-Sulem, Laurenceen_US
dc.contributor.authorMokbel, Chaficen_US
dc.date.accessioned2020-12-23T08:29:34Z-
dc.date.available2020-12-23T08:29:34Z-
dc.date.issued2005-
dc.identifier.urihttps://scholarhub.balamand.edu.lb/handle/uob/392-
dc.description.abstractIn this paper, we describe a 1D HMM offline handwriting recognition system employing an analytical approach. The system is supported by a set of robust language independent features extracted on binary images. Parameters such as lower and upper baselines are used to derive a subset of baseline dependent features. Thus, word variability due to lower and upper parts of words is better taken into account. In addition, the proposed system learns character models without character pre-segmentation. Experiments that have been conducted on the benchmark IFN/ENIT database of Tunisian handwritten country/village names, show the advantage of the proposed approach and of the baseline-dependant features.en_US
dc.format.extent5 p.en_US
dc.language.isoengen_US
dc.subjectHandwriting recognitionen_US
dc.subjectHidden Markov modelsen_US
dc.subjectFeature extractionen_US
dc.subjectVisual databasesen_US
dc.subjectNatural languagesen_US
dc.subject.lcshImage segmentationen_US
dc.titleArabic handwriting recognition using baseline dependant features and hidden Markov modelingen_US
dc.typeConference Paperen_US
dc.relation.conferenceInternational Conference on Document Analysis and Recognition (ICDAR) (8th : 31 Aug- 1 Sep 2005 : Seoul, South Korea)en_US
dc.contributor.affiliationDepartment of Electrical Engineeringen_US
dc.description.startpage1en_US
dc.description.endpage5en_US
dc.date.catalogued2019-05-22-
dc.description.statusPublisheden_US
dc.identifier.ezproxyURLhttp://ezsecureaccess.balamand.edu.lb/login?url=https://ieeexplore.ieee.org/document/1575673en_US
dc.identifier.OlibID191976-
dc.relation.ispartoftextEighth International Conference on Document Analysis and Recognition (ICDAR'05)en_US
dc.provenance.recordsourceOliben_US
Appears in Collections:Department of Electrical Engineering
Show simple item record

Record view(s)

46
checked on Nov 21, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.