Please use this identifier to cite or link to this item: https://scholarhub.balamand.edu.lb/handle/uob/2153
DC FieldValueLanguage
dc.contributor.authorChahine, Chazaen_US
dc.contributor.authorVachier-Lagorre, Corinneen_US
dc.contributor.authorChenoune, Yasminaen_US
dc.contributor.authorBerbari, Racha Elen_US
dc.contributor.authorFawal, Ziad Elen_US
dc.contributor.authorPetit, Ericen_US
dc.date.accessioned2020-12-23T09:07:34Z-
dc.date.available2020-12-23T09:07:34Z-
dc.date.issued2017-
dc.identifier.urihttps://scholarhub.balamand.edu.lb/handle/uob/2153-
dc.description.abstractThis study deals with information fusion for image segmentation. The evidence theory (or the Dempster-Shafer theory) allows the modellisation of uncertainty and imprecision in the information as well as the combination of different sources. Here, this approach is used in an unsupervised framework to combine the stochastic watershed segmentation which provides several segmentation results, with a Hessian operator in order to obtain a unique and efficient segmentation. The method is tested on natural images from the Berkeley dataset and evaluated using several evaluation metrics. The fusion results surpass those obtained with stochastic watershed alone.en_US
dc.language.isoengen_US
dc.subjectHessian matricesen_US
dc.subjectUnsupervised learningen_US
dc.subject.lcshImage segmentationen_US
dc.titleInformation fusion for unsupervised image segmentation using stochastic watershed and Hessian matrixen_US
dc.typeJournal Articleen_US
dc.contributor.affiliationDepartment of Telecommunications and Networking Engineeringen_US
dc.description.volume12en_US
dc.description.issue4en_US
dc.description.startpage525en_US
dc.description.endpage531en_US
dc.date.catalogued2019-06-27-
dc.description.statusPublisheden_US
dc.identifier.ezproxyURLhttp://ezsecureaccess.balamand.edu.lb/login?url=https://ieeexplore.ieee.org/document/8320130en_US
dc.identifier.OlibID192510-
dc.relation.ispartoftextIET image processing journalen_US
dc.provenance.recordsourceOliben_US
crisitem.author.parentorgIssam Fares Faculty of Technology-
Appears in Collections:Department of Telecommunications and Networking Engineering
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.