Please use this identifier to cite or link to this item:
Title: Designing Catmull-Clark subdivision surfaces with curve interpolation constraints
Authors: Nasri, Ahmad H
Abbas, Abdulwahed
Affiliations: Department of Computer Science 
Keywords: Recursive subdivision
Curve interpolation constraints
N-sided regions
Issue Date: 2002
Part of: Journal of computers & graphics
Volume: 26
Issue: 3
Start page: 393
End page: 400
Generating subdivision surfaces with curve interpolation constraints is needed in both computer graphics and geometric modeling applications. In the context of the Doo–Sabin subdivision scheme, this can be achieved through the use of polygonal complexes as suggested by Nasri (Presented at the Fifth Siam Conference on Geometric Design, Nashville, 1997; Comput. Aided Geom. Des. 17 (2000) 595). A polygonal complex is simply a polygonal mesh whose structure depends on the subdivision scheme used and whose limit of subdivision is a curve rather than a surface. The subdivision scheme applied to these complexes is basically the same applied to the mesh defining the surface but with possible modification of its subdivision rules. The advantage of that lies in the retention of the same subdivision coefficients, thus saving the need for any further analysis at the limit. In this paper, we propose a method for using polygonal complexes to generate Catmull–Clark subdivision surfaces with curve interpolation constraints. The polygonal complexes are embedded here in the given mesh, which can possibly interpolate intersecting curves.
DOI: 10.1016/S0097-8493(02)00082-1
Ezproxy URL: Link to full text
Type: Journal Article
Appears in Collections:Department of Computer Science

Show full item record


checked on May 1, 2021

Google ScholarTM


Dimensions Altmetric

Dimensions Altmetric

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.