Please use this identifier to cite or link to this item: https://scholarhub.balamand.edu.lb/handle/uob/7301
DC FieldValueLanguage
dc.contributor.authorSabat, Miraen_US
dc.contributor.authorFares, Nouraen_US
dc.contributor.authorMitri, Georgeen_US
dc.contributor.authorKfoury, Adiben_US
dc.date.accessioned2024-04-03T07:21:24Z-
dc.date.available2024-04-03T07:21:24Z-
dc.date.issued2024-03-12-
dc.identifier.issn03043894-
dc.identifier.urihttps://scholarhub.balamand.edu.lb/handle/uob/7301-
dc.description.abstractThe effects of asbestos on human health have spurred numerous studies examining its risks in urban environments. Recent works have shifted towards less-invasive techniques for remote detection and classification of asbestos-cement. In this context, this study combines visible (VIS) and near-infrared (NIR) reflectance data collected in-situ with reference signals from the USGS spectral library, utilizing optimized regression analysis to determine the surface composition of corrugated asbestos-cement rooftops. An outlier filter was successfully implemented to enhance the accuracy of regression calculations, achieving a high level of agreement with actual field observations. The regression analysis revealed varying proportions of weathered cement, hazardous asbestos fibers (specifically chrysotile and cummingtonite), and biological growth (such as lichens and moss). These results are consistent with previous research on the composition of asbestos-cement rooftops, including a comparable field study and XRD analysis conducted in 2019. This underscores the importance of using regression analysis, preceded by an outlier filtering step, on VIS and NIR reflectance data to ascertain the surface composition of asbestos-cement rooftops. This methodology holds potential for application to larger hyperspectral datasets across more extensive sample surfaces and areas.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.subjectAsbestos-cementen_US
dc.subjectNIRen_US
dc.subjectOutlier filteren_US
dc.subjectReflectanceen_US
dc.subjectRegression analysisen_US
dc.subjectSDG 11en_US
dc.subjectUrban pollutionen_US
dc.subjectVISen_US
dc.titleDetermination of asbestos cement rooftop surface composition using regression analysis and hyper-spectral reflectance data in the visible and near-infrared rangesen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1016/j.jhazmat.2024.134006-
dc.identifier.pmid38518694-
dc.identifier.scopus2-s2.0-85188577564-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85188577564-
dc.contributor.affiliationDepartment of Mathematicsen_US
dc.contributor.affiliationInstitute of the Environmenten_US
dc.contributor.affiliationDepartment of Environmental Scienceen_US
dc.description.volume469en_US
dc.date.catalogued2024-04-03-
dc.description.statusPublisheden_US
dc.identifier.ezproxyURLhttp://ezsecureaccess.balamand.edu.lb/login?url=https://doi.org/10.1016/j.jhazmat.2024.134006en_US
dc.relation.ispartoftextJournal of Hazardous Materialsen_US
crisitem.author.parentorgFaculty of Arts and Sciences-
crisitem.author.parentorgFaculty of Arts and Sciences-
Appears in Collections:Institute of the Environment
Department of Environmental Science
Department of Mathematics
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 16, 2024

Record view(s)

67
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.