Please use this identifier to cite or link to this item: https://scholarhub.balamand.edu.lb/handle/uob/6554
DC FieldValueLanguage
dc.contributor.authorBharat, Chriannaen_US
dc.contributor.authorGlantz, Meyer Den_US
dc.contributor.authorAguilar-Gaxiola, Sergioen_US
dc.contributor.authorAlonso, Jordien_US
dc.contributor.authorBruffaerts, Ronnyen_US
dc.contributor.authorBunting, Brendanen_US
dc.contributor.authorCaldas-de-Almeida, José Miguelen_US
dc.contributor.authorCardoso, Graçaen_US
dc.contributor.authorChardoul, Stephanieen_US
dc.contributor.authorde Jonge, Peteren_US
dc.contributor.authorGureje, Oyeen_US
dc.contributor.authorHaro, Josep Mariaen_US
dc.contributor.authorHarris, Meredith Gen_US
dc.contributor.authorKaram, Elie G.en_US
dc.contributor.authorKawakami, Noritoen_US
dc.contributor.authorKiejna, Andrzejen_US
dc.contributor.authorKovess-Masfety, Vivianeen_US
dc.contributor.authorLee, Singen_US
dc.contributor.authorMcGrath, John Jen_US
dc.contributor.authorMoskalewicz, Jaceken_US
dc.contributor.authorNavarro-Mateu, Fernandoen_US
dc.contributor.authorRapsey, Charleneen_US
dc.contributor.authorSampson, Nancy Aen_US
dc.contributor.authorScott, Kate Men_US
dc.contributor.authorTachimori, Hisateruen_US
dc.contributor.authorTen Have, Margreeten_US
dc.contributor.authorVilagut, Gemmaen_US
dc.contributor.authorWojtyniak, Bogdanen_US
dc.contributor.authorXavier, Miguelen_US
dc.contributor.authorKessler, Ronald Cen_US
dc.contributor.authorDegenhardt, Louisaen_US
dc.date.accessioned2023-02-13T09:03:50Z-
dc.date.available2023-02-13T09:03:50Z-
dc.date.issued2023-05-
dc.identifier.issn09652140-
dc.identifier.urihttps://scholarhub.balamand.edu.lb/handle/uob/6554-
dc.description.abstractLikelihood of alcohol dependence (AD) is increased among people who transition to greater levels of alcohol involvement at a younger age. Indicated interventions delivered early may be effective in reducing risk, but could be costly. One way to increase cost-effectiveness would be to develop a prediction model that targeted interventions to the subset of youth with early alcohol use who are at highest risk of subsequent AD.en_US
dc.language.isoengen_US
dc.publisherWiley Online Libraryen_US
dc.subjectAdolescenceen_US
dc.subjectAlcohol useen_US
dc.subjectCalibrationen_US
dc.subjectDependenceen_US
dc.subjectDiscriminationen_US
dc.subjectMachine learningen_US
dc.titleDevelopment and evaluation of a risk algorithm predicting alcohol dependence after early onset of regular alcohol useen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1111/add.16122-
dc.identifier.pmid36609992-
dc.identifier.scopus2-s2.0-85147387102-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85147387102-
dc.contributor.affiliationFaculty of Medicineen_US
dc.date.catalogued2023-02-13-
dc.description.statusIn Pressen_US
dc.identifier.ezproxyURLhttp://ezsecureaccess.balamand.edu.lb/login?url=https://doi.org/10.1111/add.16122en_US
dc.relation.ispartoftextAddictionen_US
dc.description.campusSGH campusen_US
Appears in Collections:Faculty of Medicine
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 23, 2024

Record view(s)

47
checked on Nov 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.