Please use this identifier to cite or link to this item: https://scholarhub.balamand.edu.lb/handle/uob/5329
DC FieldValueLanguage
dc.contributor.authorDagher, Issamen_US
dc.contributor.authorBarbara, Danyen_US
dc.date.accessioned2022-01-20T09:10:05Z-
dc.date.available2022-01-20T09:10:05Z-
dc.date.issued2021-
dc.identifier.issn13807501-
dc.identifier.urihttps://scholarhub.balamand.edu.lb/handle/uob/5329-
dc.description.abstractThis paper tackled the problem of human facial age estimation using transfer learning of some pre-trained CNNs, namely VGG, Res-Net, Google-Net, and Alex-Net. Those networks have been fine-tuned with transfer learning and undergone many experiments to get the optimum number of outputs and the optimum age gap. Based on those experiments, a novel hierarchical network that generates high age estimation accuracy was developed. This new network consists of a set of pre-trained 2-classes CNNs (Google-Net) with an optimum age gap which can better organize the face images in the age group they belong to. To show its effectiveness, it was compared with other states of the art techniques on the FGNET and the MORPH databases.en_US
dc.language.isoengen_US
dc.subjectFacial age estimationen_US
dc.subjectPretrained CNNen_US
dc.subjectTransfer learningen_US
dc.titleFacial age estimation using pre-trained CNN and transfer learningen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1007/s11042-021-10739-w-
dc.identifier.scopus2-s2.0-85102298593-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85102298593-
dc.contributor.affiliationDepartment of Computer Engineeringen_US
dc.description.volume80en_US
dc.description.issue13en_US
dc.description.startpage20369en_US
dc.description.endpage20380en_US
dc.date.catalogued2022-01-20-
dc.description.statusPublisheden_US
dc.identifier.ezproxyURLhttp://ezsecureaccess.balamand.edu.lb/login?url=https://link.springer.com/article/10.1007/s11042-021-10739-wen_US
dc.relation.ispartoftextMultimedia Tools and Applicationsen_US
crisitem.author.parentorgFaculty of Engineering-
Appears in Collections:Department of Computer Engineering
Show simple item record

SCOPUSTM   
Citations

23
checked on Nov 16, 2024

Record view(s)

65
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.