Please use this identifier to cite or link to this item:
https://scholarhub.balamand.edu.lb/handle/uob/5152
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Abdulaziz, Abdulrahman Ali | en_US |
dc.contributor.author | Judy Said | en_US |
dc.date.accessioned | 2021-09-27T07:13:59Z | - |
dc.date.available | 2021-09-27T07:13:59Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 09600779 | - |
dc.identifier.uri | https://scholarhub.balamand.edu.lb/handle/uob/5152 | - |
dc.description.abstract | In this paper we apply the chaos game to n-sided regular polygons to generate fractals that are similar to the Sierpinski gasket. We show that for each n-gon, there is an exact ratio that will yield a perfect gasket. We then find a formula for this ratio that depends only on the angle π/n. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.subject | Chaos game | en_US |
dc.subject | Fractals | en_US |
dc.subject | Iterated function systems | en_US |
dc.subject | Sierpinski gasket | en_US |
dc.title | On the contraction ratio of iterated function systems whose attractors are Sierpinski n-gons | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | 10.1016/j.chaos.2021.111140 | - |
dc.identifier.scopus | 2-s2.0-85108454802 | - |
dc.identifier.url | https://doi.org/10.1016/j.chaos.2021.111140 | - |
dc.contributor.affiliation | Department of Mathematics | en_US |
dc.description.volume | 150 | en_US |
dc.description.issue | September 2021, 111140 | en_US |
dc.description.startpage | 1 | en_US |
dc.description.endpage | 5 | en_US |
dc.date.catalogued | 2021-09-05 | - |
dc.description.status | Published | en_US |
dc.relation.ispartoftext | Chaos, Solitons & Fractals | en_US |
crisitem.author.parentorg | Faculty of Arts and Sciences | - |
Appears in Collections: | Department of Mathematics |
SCOPUSTM
Citations
1
checked on Nov 16, 2024
Record view(s)
109
checked on Nov 21, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.