Please use this identifier to cite or link to this item: https://scholarhub.balamand.edu.lb/handle/uob/5152
DC FieldValueLanguage
dc.contributor.authorAbdulaziz, Abdulrahman Alien_US
dc.contributor.authorJudy Saiden_US
dc.date.accessioned2021-09-27T07:13:59Z-
dc.date.available2021-09-27T07:13:59Z-
dc.date.issued2021-
dc.identifier.issn09600779-
dc.identifier.urihttps://scholarhub.balamand.edu.lb/handle/uob/5152-
dc.description.abstractIn this paper we apply the chaos game to n-sided regular polygons to generate fractals that are similar to the Sierpinski gasket. We show that for each n-gon, there is an exact ratio that will yield a perfect gasket. We then find a formula for this ratio that depends only on the angle π/n.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.subjectChaos gameen_US
dc.subjectFractalsen_US
dc.subjectIterated function systemsen_US
dc.subjectSierpinski gasketen_US
dc.titleOn the contraction ratio of iterated function systems whose attractors are Sierpinski n-gonsen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1016/j.chaos.2021.111140-
dc.identifier.scopus2-s2.0-85108454802-
dc.identifier.urlhttps://doi.org/10.1016/j.chaos.2021.111140-
dc.contributor.affiliationDepartment of Mathematicsen_US
dc.description.volume150en_US
dc.description.issueSeptember 2021, 111140en_US
dc.description.startpage1en_US
dc.description.endpage5en_US
dc.date.catalogued2021-09-05-
dc.description.statusPublisheden_US
dc.relation.ispartoftextChaos, Solitons & Fractalsen_US
crisitem.author.parentorgFaculty of Arts and Sciences-
Appears in Collections:Department of Mathematics
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 16, 2024

Record view(s)

109
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.