Please use this identifier to cite or link to this item: https://scholarhub.balamand.edu.lb/handle/uob/4940
DC FieldValueLanguage
dc.contributor.advisorHoz, Mervat Elen_US
dc.contributor.authorDaher, Nour El Houdaen_US
dc.date.accessioned2020-12-23T14:45:19Z-
dc.date.available2020-12-23T14:45:19Z-
dc.date.issued2020-
dc.identifier.urihttps://scholarhub.balamand.edu.lb/handle/uob/4940-
dc.descriptionIncludes bibliographical references (p. 100-106).en_US
dc.description.abstractThe aim of this research is to assess the quality of urban rainwater in Tripoli and the surrounding areas in North Lebanon, and then treat its pollutants through a new green technology system. Understanding urban stormwater is essential to control and manage rainwater and its impact on the water system. Urbanization results in increased runoff, increased water density, and increased pollutants in local streams and downstream water. This study is divided into two parts: The first part is to assess the quality of urban stormwater in Tripoli and the surrounding areas in North Lebanon in terms of physical, chemical and bacteriological parameters. The values of these parameters are compared with those of Lebanese drinking water and the Environmental Protection Agency standards. A field survey was carried out to study the sites for sampling rainwater, and site filtering, and then the best sites for sampling were determined. Moreover, the statistical analysis of the parameters tested using the Pearson correlation method and the GIS program was used to study the relative contribution of different types of land use to the quality of stormwater. The second part is to design an innovative system (green stormwater system) for sustainable and efficient pollution removal. This stage aims to treat the pollutants that were present in the urban stormwater and allow this water to be used as another source of drinking water and domestic water. The system is designed to remove microbes, nutrients, heavy metals, and polycyclic aromatic hydrocarbons pollutants. The results of the urban stormwater assessment showed that they contain E coli, Total Coliforms, Pseudomonas aeruginosa, BOD5, Nitrite, Potassium, Phosphate, Ammonium, Mercury Acenaphthylene, Phenanthrene, Benzo (a) Pyrene, Indeno (1,2, 3-c, d) Pyrene, in addition to turbidity. The system designed is a filtration system consisting of four different layers; Aqualen fibers, Raschig rings, zeolites, and activated carbon. E coli, Total coliforms, nitrate, nitrite, phosphate and ammonium were tested to study Aqualen fiber layer (AFL) and complete system (CS) efficiencies. The results showed that 95% E coli, 50% nitrite, 82% nitrate, 36% phosphate, 96% ammonium were removed in AFL, while 98% of E coli, 89% of total coliforms, 50% nitrite, 85% nitrate, 50% phosphate and 96% ammonium were removed in CS. The mercury compounds and polycyclic aromatic hydrocarbons detected in stormwater samples could not be tested due to the specific barriers they encountered after the global spread of Covid-19. This study is the first of its kind in Lebanon, with its treatment system design.en_US
dc.description.statementofresponsibilityby Nour El Houda Daheren_US
dc.format.extent1 online resource (xv, 133 pages) :ill., tablesen_US
dc.language.isoengen_US
dc.rightsThis object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the personal and educational use exceptions must be obtained from the copyright holderen_US
dc.subject.lcshUrban runoffen_US
dc.subject.lcshWater--Pollutionen_US
dc.subject.lcshCivil engineeringen_US
dc.subject.lcshDissertations, Academicen_US
dc.subject.lcshUniversity of Balamand--Dissertationsen_US
dc.titleAssessing urban storm water and treating its pollutants through a new green technology systemen_US
dc.typeThesisen_US
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.contributor.facultyFaculty of Engineeringen_US
dc.contributor.institutionUniversity of Balamanden_US
dc.date.catalogued2020-12-18-
dc.description.degreeMS in Environmental Engineeringen_US
dc.description.statusPublisheden_US
dc.identifier.ezproxyURLhttp://ezsecureaccess.balamand.edu.lb/login?url=http://olib.balamand.edu.lb/projects_and_theses/284286.pdfen_US
dc.identifier.OlibID284286-
dc.provenance.recordsourceOliben_US
Appears in Collections:UOB Theses and Projects
Show simple item record

Record view(s)

401
checked on Apr 27, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.