Please use this identifier to cite or link to this item: https://scholarhub.balamand.edu.lb/handle/uob/3941
DC FieldValueLanguage
dc.contributor.advisorChalhoub, Elieen_US
dc.contributor.authorHawly, Mhamaden_US
dc.date.accessioned2020-12-23T14:39:21Z-
dc.date.available2020-12-23T14:39:21Z-
dc.date.issued2018-
dc.identifier.urihttps://scholarhub.balamand.edu.lb/handle/uob/3941-
dc.descriptionIncludes bibliographical references (p. 70-79).en_US
dc.description.abstractVarious are the detrimental impacts on the environment as well as on human beings when burning fossil fuel for energy purposes. This has led to great interests in alternative energy sources as prime solution. Lignocellulosic biomass is considered to be the major biological renewable energy source for biofuels production. Lignocelluloses are plentiful, naturally found and require simple processing. To this end, microbial fermentation systems have seen potential gains for the generation of biofuels. Biomass contains different mixed sugars and it can serve as promising substrate in fermentation processes like AcetoneButanol-Ethanol (ABE) dark fermentation. Moreover, the addition of zinc in ABE fermentation plays a substantial role in genetic modifications and the regulation of specific enzymes of the metabolic pathway which leads to enhanced production of biofuels. In order to predict the behavior of each carbohydrate and thus find the optimum conditions in ABE fermentation, a predictive mathematical model of ABE dark fermentation was developed in this study. This model serves to follow the dynamic progression of three different carbohydrates used as sole carbon source namely xylose, arabinose and glucose found in lignocelluloses. The model was simulated under seven scenarios with and without supplementary zinc and then validated with different experimental data. Sensitivity analysis, parameter scan and parameter estimation were performed in order to fit best the experimental data. The simulated results of this model show compliance with the experimental results. Each carbohydrate showed enhanced consumption rates under supplementary zinc and therefore higher level of solvents. However, more studies can be conducted based on this built model in order to predict the optimum conditions for the combination of all three carbohydrates to come up with a comprehensive mathematical lignocellulose model.en_US
dc.description.statementofresponsibilityby Mhamad Hawlyen_US
dc.format.extentxii, 86 p. : ill., tablesen_US
dc.language.isoengen_US
dc.rightsThis object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the personal and educational use exceptions must be obtained from the copyright holderen_US
dc.subject.lcshBiomass energyen_US
dc.subject.lcshDissertations, Academicen_US
dc.subject.lcshUniversity of Balamand--Dissertationsen_US
dc.titleImproved mathematical model of dark fermentation for enhanced biofuels production with zinc supplementationen_US
dc.typeThesisen_US
dc.contributor.corporateUniversity of Balamanden_US
dc.contributor.departmentDepartment of Chemical Engineeringen_US
dc.contributor.facultyFaculty of Engineeringen_US
dc.contributor.institutionUniversity of Balamanden_US
dc.description.degreeMS in Chemical Engineeringen_US
dc.description.statusPublisheden_US
dc.identifier.ezproxyURLhttp://ezsecureaccess.balamand.edu.lb/login?url=http://olib.balamand.edu.lb/projects_and_theses/184594.pdfen_US
dc.identifier.OlibID184594-
dc.provenance.recordsourceOliben_US
Appears in Collections:UOB Theses and Projects
Show simple item record

Record view(s)

126
checked on Nov 21, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.