Please use this identifier to cite or link to this item: https://scholarhub.balamand.edu.lb/handle/uob/2501
DC FieldValueLanguage
dc.contributor.authorDagher, Issamen_US
dc.contributor.authorBadawi, Mustafaen_US
dc.contributor.authorBeyrouti, Bassamen_US
dc.date.accessioned2020-12-23T09:14:31Z-
dc.date.available2020-12-23T09:14:31Z-
dc.date.issued2006-
dc.identifier.urihttps://scholarhub.balamand.edu.lb/handle/uob/2501-
dc.descriptionThis paper was presented in " The IASTED International Conference on Artificial Intelligence and Soft Computing (ASC 2004). September 01 to September 03, 2004. Marbella, Spain. ".en_US
dc.description.abstractIn this paper, a new approach to extract singular points in a fingerprint image is presented. It is usually difficult to locate the exact position of a core or a delta due to the noisy nature of fingerprint images. These points are the most widely used for fingerprint classification and matching. Image enhancement, thinning, cropping, and alignment are used for minutiae extraction. Based on the Poincaré curve obtained from the directional image, our algorithm extracts the singular points in a fingerprint with high accuracy. It examines ridge directions when singular points are missing. The algorithm has been tested for classification performance on the NIST-4 fingerprint database and found to give better results than the neural networks algorithm. Copyright © 2005 John Wiley & Sons, Ltd.en_US
dc.format.extent18 p.en_US
dc.language.isoengen_US
dc.subjectFingerprinten_US
dc.subjectClassificationen_US
dc.subjectMatchingen_US
dc.subjectDirectional imageen_US
dc.subjectPoincare´indexen_US
dc.subjectSingular pointsen_US
dc.subjectCore and deltaen_US
dc.titleRidge directional singular points for fingerprint recognition and matchingen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1002/asmb.611-
dc.contributor.affiliationDepartment of Computer Engineeringen_US
dc.description.volume22en_US
dc.description.issue1en_US
dc.description.startpage73en_US
dc.description.endpage91en_US
dc.date.catalogued2017-11-10-
dc.description.statusPublisheden_US
dc.identifier.ezproxyURLhttp://ezsecureaccess.balamand.edu.lb/login?url=http://onlinelibrary.wiley.com/doi/10.1002/asmb.611/epdfen_US
dc.identifier.OlibID174887-
dc.relation.ispartoftextApplied stochastic models in business and industryen_US
dc.provenance.recordsourceOliben_US
crisitem.author.parentorgFaculty of Engineering-
Appears in Collections:Department of Computer Engineering
Show simple item record

Record view(s)

47
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.