Please use this identifier to cite or link to this item: https://scholarhub.balamand.edu.lb/handle/uob/2448
DC FieldValueLanguage
dc.contributor.authorGeorgiopoulos, Men_US
dc.contributor.authorDagher, Issamen_US
dc.contributor.authorHeileman, G.Len_US
dc.contributor.authorBebis, Gen_US
dc.date.accessioned2020-12-23T09:13:31Z-
dc.date.available2020-12-23T09:13:31Z-
dc.date.issued1999-
dc.identifier.urihttps://scholarhub.balamand.edu.lb/handle/uob/2448-
dc.description.abstractThis paper discusses a variation of the Fuzzy ART algorithm referred to as the Fuzzy ART Variant. The Fuzzy ART Variant is a Fuzzy ART algorithm that uses a very large choice parameter value. Based on the geometrical interpretation of the weights in Fuzzy ART, useful properties of learning associated with the Fuzzy ART Variant are presented and proven. One of these properties establishes an upper bound on the number of list presentations required by the Fuzzy ART Variant to learn an arbitrary list of input patterns. This bound is small and demonstrates the short-training time property of the Fuzzy ART Variant. Through simulation, it is shown that the Fuzzy ART Variant is as good a clustering algorithm as a Fuzzy ART algorithm that uses typical (i.e. small) values for the choice parameter.en_US
dc.format.extent13 p.en_US
dc.language.isoengen_US
dc.subjectNeural networken_US
dc.subjectUnsupervised learningen_US
dc.subjectSupervised learningen_US
dc.subjectClusteringen_US
dc.subjectAdaptive resonance theoryen_US
dc.titleProperties of learning of a fuzzy ART varianten_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1016/S0893-6080(99)00031-3-
dc.contributor.affiliationDepartment of Computer Engineeringen_US
dc.description.volume12en_US
dc.description.issue6en_US
dc.description.startpage837en_US
dc.description.endpage850en_US
dc.date.catalogued2017-11-10-
dc.description.statusPublisheden_US
dc.identifier.ezproxyURLhttp://ezsecureaccess.balamand.edu.lb/login?url=https://doi.org/10.1016/S0893-6080(99)00031-3en_US
dc.identifier.OlibID174895-
dc.relation.ispartoftextNeural networksen_US
dc.provenance.recordsourceOliben_US
crisitem.author.parentorgFaculty of Engineering-
Appears in Collections:Department of Computer Engineering
Show simple item record

SCOPUSTM   
Citations

31
checked on Nov 23, 2024

Record view(s)

53
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.