Please use this identifier to cite or link to this item: https://scholarhub.balamand.edu.lb/handle/uob/1989
DC FieldValueLanguage
dc.contributor.authorDagher, Issamen_US
dc.contributor.authorSallak, Nour Elen_US
dc.contributor.authorHazim, Hanien_US
dc.date.accessioned2020-12-23T09:04:21Z-
dc.date.available2020-12-23T09:04:21Z-
dc.date.issued2014-
dc.identifier.urihttps://scholarhub.balamand.edu.lb/handle/uob/1989-
dc.description.abstractIn this paper, face recognition using the most representative SIFT images is presented. It is based on obtaining the SIFT (SCALE INVARIANT FEATURE TRANSFORM) features in different regions of each training image. Those regions were obtained using the K-means clustering algorithm applied on the key-points obtained from the SIFT algorithm. Based on these features, an algorithm which will get the most representative images of each face is presented. In the test phase, an unknown face image is recognized according to those representative images. In order to show its effectiveness this algorithm is compared to other SIFT algorithms and to the LDP algorithm for different databases.en_US
dc.format.extent11 p.en_US
dc.language.isoengen_US
dc.subjectFace recognitionen_US
dc.subjectSIFTen_US
dc.subjectLDPen_US
dc.subjectClusteringen_US
dc.subjectMatchingen_US
dc.titleFace recognition using the most representative sift imagesen_US
dc.typeJournal Articleen_US
dc.contributor.affiliationDepartment of Computer Engineeringen_US
dc.description.volume7en_US
dc.description.issue1en_US
dc.description.startpage225en_US
dc.description.endpage236en_US
dc.date.catalogued2017-11-09-
dc.description.statusPublisheden_US
dc.identifier.OlibID174874-
dc.identifier.openURLhttp://www.sersc.org/journals/IJSIP/vol7_no1/21.pdfen_US
dc.relation.ispartoftextInternational journal of signal processing image processing and pattern recognitionen_US
dc.provenance.recordsourceOliben_US
crisitem.author.parentorgFaculty of Engineering-
Appears in Collections:Department of Computer Engineering
Show simple item record

Record view(s)

44
checked on Nov 21, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.