Please use this identifier to cite or link to this item: https://scholarhub.balamand.edu.lb/handle/uob/1988
DC FieldValueLanguage
dc.contributor.authorDagher, Issamen_US
dc.contributor.authorNachar, Rabihen_US
dc.date.accessioned2020-12-23T09:04:20Z-
dc.date.available2020-12-23T09:04:20Z-
dc.date.issued2006-
dc.identifier.urihttps://scholarhub.balamand.edu.lb/handle/uob/1988-
dc.description.abstractIn this paper, a fast incremental principal non-Gaussian directions analysis algorithm, called IPCA-ICA, is introduced. This algorithm computes the principal components of a sequence of image vectors incrementally without estimating the covariance matrix (so covariance-free) and at the same time transforming these principal components to the independent directions that maximize the non-Gaussianity of the source. Two major techniques are used sequentially in a real-time fashion in order to obtain the most efficient and independent components that describe a whole set of human faces database. This procedure is done by merging the runs of two algorithms based on principal component analysis (PCA) and independent component analysis (ICA) running sequentially. This algorithm is applied to face recognition problem. Simulation results on different databases showed high average success rate of this algorithm compared to others.en_US
dc.format.extent4 p.en_US
dc.language.isoengen_US
dc.subjectBlind source separationen_US
dc.subjectIPCA-ICA,en_US
dc.subjectPrincipal component analysis (PCA)en_US
dc.subjectIndependent component analysis (ICA)en_US
dc.subjectPrincipal non-Gaussian directionsen_US
dc.subject.lcshImage processingen_US
dc.titleFace recognition using IPCA-ICA algorithmen_US
dc.typeJournal Articleen_US
dc.contributor.affiliationDepartment of Computer Engineeringen_US
dc.contributor.affiliationDepartment of Telecommunications and Networking Engineeringen_US
dc.description.volume28en_US
dc.description.issue6en_US
dc.description.startpage996en_US
dc.description.endpage1000en_US
dc.date.catalogued2017-11-10-
dc.description.statusPublisheden_US
dc.identifier.ezproxyURLhttp://ezsecureaccess.balamand.edu.lb/login?url=http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1624362en_US
dc.identifier.OlibID174886-
dc.relation.ispartoftextIEEE trasnactions on pattern analysis and machine intelligenceen_US
dc.provenance.recordsourceOliben_US
crisitem.author.parentorgFaculty of Engineering-
Appears in Collections:Department of Computer Engineering
Show simple item record

Record view(s)

49
checked on Nov 21, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.